If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+345x-476100=0
a = 3; b = 345; c = -476100;
Δ = b2-4ac
Δ = 3452-4·3·(-476100)
Δ = 5832225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5832225}=2415$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(345)-2415}{2*3}=\frac{-2760}{6} =-460 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(345)+2415}{2*3}=\frac{2070}{6} =345 $
| 6(-4-7x)-8=(-344) | | 6(4-7x)-8=(-344) | | j+11/12=13/18 | | (x-1)(x+5)=x²+4x-2 | | d^2-3d-28=0 | | 5(x=4)-x=40x=5 | | 40-3x+10x=-10-8x-10 | | -2(a+4)=-2a | | n+8/15=3/10 | | 5(x=4)-x=40 | | x/4+7=47 | | 5.9x=106.2 | | 80-19=n | | 8(2n+6)=24+4n | | w-10=0.5w-7 | | -5/8x-1/9x=-102 | | j-16/2=2 | | -9-3=8x+4-7x | | x/3-2x=-12 | | n=163-27 | | x^2-4/5x+4/25=0 | | -5(8-6r)=4+8r | | -7(4-4x)=9 | | A=20+2n | | 5(x-7)=x+13 | | 7=2c-3 | | 0.04z^2+0.04z-0.07=0 | | -31=-4+7x-4 | | 8x+16+6x−60=180 | | R=-18+4r | | 25m+33,250=35,000+-150m | | −0.7(0.3x–0.8)=−4.48 |